1. | Pada percobaan melempar dua buah mata uang logam (koin) homogen yang bersisi angka (A) dan gambar (G) sebanyak satu kali. Tentukan ruang sampel percobaan tersebut.
Jawab : |
| a. | Kejadian yang mungkin :
AA : Muncul sisi angka pada kedua koin
AG : Muncul sisi angka pada koin 1 dan sisi gambar pada koin 2 |
| b. | Ruang sampel = { (A,A), (A,G), (G,A), (G,G) }
Banyak titik sampel ada 4 yaitu (A,A), (A,G), (G,A), dan (G,G). |
2. | Dua dadu homogen berbentuk kubus bermata 6 dilempar bersama-sama sebanyak satu kali. Tentukan ruang sampel pada percobaan tersebut. Jawab : |
|
|
|
|
|
|
| Titik sampelnya ada sebanyak 36 kemungkinan |
3. | Seperangkat kartu bridge dikocok, lalu diambil satu kartu secara acak. Tentukan ruang sampel percobaan tersebut ? |
|
| |
| Jawab : |
|
| Seperangkat kartu bridge berisi 52 kartu yang terdiri dari empat kelompok yang dikenal dengan istilah daun / sekop ( ), keriting ( ), wajik ( ) dan hati ( ). Kartu daun dan keriting berwarna hitam, sedang wajik dan hati berwarna merah. Setiap kelompok bentuk tadi masing-masing terdiri dari King, Ratu, Joker, As, angka 2, 3, 4, 5, 6, 7, 8, 9 dan 10. Jika seperangkat kartu itu dikocok dan diambil satu kartu secara acak, maka kejadian yang mungkin ada sebanyak 52 kemungkinan.
Pengertian Peluang Suatu Kejadian
Definisi kejadian :
Kejadian atau peristiwa merupakan himpunan bagian dari ruang sampel
Definisi peluang :
Peluang suatu kejadian yang diinginkan adalah perbandingan banyaknya titik sampel kejadian yang diinginkan itu dengan banyaknya anggota ruang sampel kejadian tersebut.
Misalkan A adalah suatu kejadian yang diinginkan, maka nilai peluang kejadian A dinyatakan dengan
Peluang disebut juga dengan nilai kemungkinan.
Contoh :
Pada percobaan melempar sebuah dadu bermata 6, pada ruang sampelnya terdapat sebanyak 6 titik sampel, yaitu munculnya sisi dadu bermata 1, 2, 3, 4, 5, dan 6.
Kejadian-kejadian yang mungkin terjadi misalnya :
- Munculnya mata dadu ganjil
- Munculnya mata dadu genap
- Munculnya mata dadu prima
|
|
Jika pada percobaan tersebut diinginkan kejadian munculnya mata dadu prima, maka mata dadu yang diharapkan adalah munculnya mata dadu 2, 3, dan 5, atau sebanyak 3 titik sampel. Sedang banyaknya ruang sampel adalah 6, maka peluang kejadian munculnya mata dadu prima adalah
Atau:
Menyatakan nilai peluang suatu kejadian pada suatu percobaan dapat dinyatakan dengan menggunakan cara :
Contoh:
Pada percobaan melempar sebuah koin bersisi angka (A) dan gambar (G) dengan sebuah dadu bermata 1 sampai 6 bersama-sama sebanyak satu kali. Berapa peluang munculnya pasangan koin sisi gambar dan dadu mata ganjil ?
Banyaknya kejadian munculnya pasangan gambar dan mata dadu ganjil ada 3, yaitu (G,1), (G,3) dan (G,5). Peluang kejadian munculnya pasangan gambar dan mata dadu ganjil adalah
Batas-Batas Nilai Peluang
Nilai peluang suatu kejadian (P) memenuhi sifat , yang berarti
Jika P = 0, maka kejadian tersebut tidak pernah terjadi atau suatu kemustahilan
Jika P = 1, maka kejadian tersebut merupakan kepastian.
Jika A adalah suatu kejadian yang terjadi, dan A’ adalah suatu kejadian dimana A tidak terjadi,
maka :
Contoh:
1. Sebuah dadu berbentuk mata enam dilempar sekali. Tentukan nilai peluang :
a. munculnya mata dadu bilangan asli
b. munculnya mata dadu 7
Jawab :
a. Nilai peluang munculnya mata dadu bilangan asli adalah 1, karena merupakan suatu kepastian.
b. Nilai peluang munculnya mata dadu 7 adalah 0, karena merupakan suatu kemustahilan
2. Dua buah dadu kubus homogen bermata enam dilempar bersama-sama sebanyak satu kali. Berapakah peluang munculnya mata dadu tidak berjumlah 12 ?
Jawab :
Banyaknya ruang sampel percobaan tersebut ada 36 kejadian, sedang kejadian muncul mata dadu berjumlah 12 ada 1 kejadian yaitu (6,6), sehingga :
2. Di suatu daerah kemungkinan akan terjadi serangan penyakit pada ternak ayam adalah 0,24. Jika populasi ayam di daerah tersebut terdapat sebanyak 400 ekor, berapa ekor ayam yang kemungkinan akan terkena penyakit tersebut ?
Jawab :
Banyaknya ayam yang kemungkinan akan terkena penyakit di daerah tersebut
= nilai kemungkinan terjadi penyakit x populasi ayam
= 0,24 x 400 ekor
= 96 ekor ayam
Menghitung Nilai Peluang Suatu Kejadian Sederhana
Menentukan nilai peluang kejadian sederhana dari suatu peristiwa adalah dengan mengetahui terlebih dahulu semua kejadian yang mungkin (ruang sampel) dan kejadian-kejadian yang diinginkan (titik sampel).
Contoh :
1. Pada peristiwa melempar dua buah dadu, merah dan hitam, masing-
masing bermata 1 sampai 6 secara bersama-sama sebanyak satu kali. Berapakah nilai peluang kejadian-kejadian :
a. muncul mata 4 dadu merah atau mata ganjil dadu hitam
b. muncul mata dadu merah kurang dari 3 dan mata dadu hitam lebih dari 4 |
|
Jawab :
Ruang sampel ada sebanyak 36 kemungkinan.
a. kejadian muncul mata 4 dadu merah atau mata ganjil dadu hitam ada sebanyak 21 kemungkinan pasangan, maka peluangnya adalah :
b. kejadian muncul mata dadu merah kurang dari 3 dan mata dadu hitam lebih dari 4 ada sebanyak 4 kejadian, yaitu (1,5), (2,5), (1,6) dan (2,6), maka nilai peluangnya adalah :
3. Seperangkat kartu bridge dikocok dan diambil satu kartu secara acak. Berapa peluang bahwa kartu yang terambil adalah :
a. kartu warna merah
b. kartu As atau King
c. kartu hitam dan Ratu |
|
Jawab :
Ruang sampel ada 52 kemungkinan.
a. Kartu warna merah ada 26, maka peluangnya adalah :
b. Kartu as ada 4 buah dan kartu king ada 4 buah, maka peluangnya adalah :
Kejadian terambil kartu As atau kartu King seperti di atas merupakan kejadian saling lepas, yaitu tidak ada kejadian yang menjadi anggota kedua kejadian tersebut.
c. Kartu hitam ada 26 buah dan kartu Ratu ada 4 buah, maka peluangnya adalah :
Kejadian terambil kartu warna hitam dan kartu Ratu seperti di atas merupakan kejadian saling bebas, yaitu kejadian-kejadian yang peluangnya tidak saling mempengaruhi satu sama lain.
1) Permutasi
Permutasi adalah susunan unsur-unsur yang berbeda dalam urutan tertentu. Pada permutasi urutan diperhatikan sehingga
Permutasi k unsur dari n unsur adalah semua urutan yang berbeda yang mungkin dari k unsur yang diambil dari n unsur yang berbeda. Banyak permutasi k unsur dari n unsur ditulis atau .
Permutasi siklis (melingkar) dari n unsur adalah (n-1) !
Cara cepat mengerjakan soal permutasi
dengan penulisan nPk, hitung 10P4
kita langsung tulis 4 angka dari 10 mundur, yaitu 10.9.8.7
jadi 10P4 = 10x9x8x7 berapa itu? hitung sendiri :)
Contoh permutasi siklis :
Suatu keluarga yang terdiri atas 6 orang duduk mengelilingi sebuah meja makan yang berbentuk lingkaran. Berapa banyak cara agar mereka dapat duduk mengelilingi meja makan dengan cara yang berbeda?
Jawab :
Banyaknya cara agar 6 orang dapat duduk mengelilingi meja makan dengan urutan yang berbeda sama dengan banyak permutasi siklis (melingkar) 6 unsur yaitu :  2) Kombinasi
Kombinasi adalah susunan unsur-unsur dengan tidak memperhatikan urutannya. Pada kombinasi AB = BA. Dari suatu himpunan dengan n unsur dapat disusun himpunan bagiannya dengan untuk Setiap himpunan bagian dengan k unsur dari himpunan dengan unsur n disebut kombinasi k unsur dari n yang dilambangkan dengan ,
Contoh :
Diketahui himpunan .
Tentukan banyak himpunan bagian dari himpunan A yang memiliki 2 unsur!
Jawab :
Banyak himpunan bagian dari A yang memiliki 2 unsur adalah C (6, 2).
Cara cepat mengerjakan soal kombinasi
dengan penulisan nCk, hitung 10C4
kita langsung tulis 4 angka dari 10 mundur lalu dibagi 4!, yaitu 10.9.8.7 dibagi 4.3.2.1
jadi 10C4 = 10x9x8x7 / 4x3x2x1 berapa itu? hitung sendiri :)
Ohya jika ditanya 10C6 maka sama dengan 10C4, ingat 10C6=10C4. contoh lainnya
20C5=20C15
3C2=3C1
100C97=100C3
melihat polanya? hehe semoga bermanfaat!
Peluang Matematika 1. Pengertian Ruang Sampel dan Kejadian
Himpunan S dari semua kejadian atau peristiwa yang mungkin mucul dari suatu percobaan disebut ruang sampel. Kejadian khusus atau suatu unsur dari S disebut titik sampel atau sampel. Suatu kejadian A adalah suatu himpunan bagian dari ruang sampel S.
Contoh:
Diberikan percobaan pelemparan 3 mata uang logam sekaligus 1 kali, yang masing-masing memiliki sisi angka ( A ) dan gambar ( G ). Jika P adalah kejadian muncul dua angka, tentukan S, P (kejadian)!
Jawab :
S = { AAA, AAG, AGA, GAA, GAG, AGG, GGA, GGG}
P = {AAG, AGA, GAA} 2. Pengertian Peluang Suatu Kejadian
Pada suatu percobaan terdapat n hasil yang mungkin dan masing-masing berkesempatan sama untuk muncul. Jika dari hasil percobaan ini terdapat k hasil yang merupakan kejadian A, maka peluang kejadian A ditulis P ( A ) ditentukan dengan rumus :
Contoh :
Pada percobaan pelemparan sebuah dadu, tentukanlah peluang percobaan kejadian muncul bilangan genap!
Jawab : S = { 1, 2, 3, 4, 5, 6} maka n ( S ) = 6
Misalkan A adalah kejadian muncul bilangan genap, maka:
A = {2, 4, 6} dan n ( A ) = 3  3. Kisaran Nilai Peluang Matematika
Misalkan A adalah sebarang kejadian pada ruang sampel S dengan n ( S ) = n, n ( A ) = k dan
Jadi, peluang suatu kejadian terletak pada interval tertutup [0,1]. Suatu kejadian yang peluangnya nol dinamakan kejadian mustahil dan kejadian yang peluangnya 1 dinamakan kejadian pasti.
4. Frekuensi Harapan Suatu Kejadian
Jika A adalah suatu kejadian pada frekuensi ruang sampel S dengan peluang P ( A ), maka frekuensi harapan kejadian A dari n kali percobaan adalah n x P( A ).
Contoh :
Bila sebuah dadu dilempar 720 kali, berapakah frekuensi harapan dari munculnya mata dadu 1? Jawab :
Pada pelemparan dadu 1 kali, S = { 1, 2, 3, 4, 5, 6 } maka n (S) = 6.
Misalkan A adalah kejadian munculnya mata dadu 1, maka:
A = { 1 } dan n ( A ) sehingga :
Frekuensi harapan munculnya mata dadu 1 adalah  5. Peluang Komplemen Suatu Kejadian
Misalkan S adalah ruang sampel dengan n ( S ) = n, A adalah kejadian pada ruang sampel S, dengan n ( A ) = k dan Ac adalah komplemen kejadian A, maka nilai n (Ac) = n – k, sehingga :
Jadi, jika peluang hasil dari suatu percobaan adalah P, maka peluang hasil itu tidak terjadi adalah (1 – P).
Peluang Kejadian Majemuk 1. Gabungan Dua Kejadian
Untuk setiap kejadian A dan B berlaku :
Catatan : dibaca “ Kejadian A atau B dan dibaca “Kejadian A dan B”
Contoh :
Pada pelemparan sebuah dadu, A adalah kejadian munculnya bilangan komposit dan B adalah kejadian muncul bilangan genap. Carilah peluang kejadian A atau B!
Jawab :  2. Kejadian-kejadian Saling Lepas
Untuk setiap kejadian berlaku Jika . Sehingga Dalam kasus ini, A dan B disebut dua kejadian saling lepas.
3. Kejadian Bersyarat
Jika P (B) adalah peluang kejadian B, maka P (A|B) didefinisikan sebagai peluang kejadian A dengan syarat B telah terjadi. Jika adalah peluang terjadinya A dan B, maka Dalam kasus ini, dua kejadian tersebut tidak saling bebas.
4. Teorema Bayes
Teorema Bayes(1720 – 1763) mengemukakan hubungan antara P (A|B) dengan P ( B|A ) dalam teorema berikut ini :
5. Kejadian saling bebas Stokhastik
(i) Misalkan A dan B adalah kejadian – kejadian pada ruang sampel S, A dan B disebut dua kejadian saling bebas stokhastik apabila kemunculan salah satu tidak dipengaruhi kemunculan yang lainnya atau : P (A | B) = P (A), sehingga:
Sebaran Peluang 1. Pengertian Peubah acak dan Sebaran Peluang.
Peubah acak X adalah fungsi dari suatu sampel S ke bilangan real R. Jika X adalah peubah acak pada ruang sampel S denga X (S) merupakan himpunan berhingga, peubah acak X dinamakan peubah acak diskrit. Jika Y adalah peubah acak pada ruang sampel S dengan Y(S) merupakan interval, peubah acak Y disebut peubah acak kontinu. Jika X adalah fungsi dari sampel S ke himpunan bilangan real R, untuk setiap dan setiap maka:
Misalkan X adalah peubah acak diskrit pada ruang sampel S, fungsi masa peluang disingkat sebaran peluang dari X adalah fungsi f dari R yang ditentukan dengan rumus berikut :
2. Sebaran Binom
Sebaran Binom atau Distribusi Binomial dinyatakan dengan rumus sebagai berikut :
Dengan P sebagai parameter dan
Rumus ini dinyatakan sebagai:
untuk n = 0, 1, 2, .... ,n
Dengan P sebagai parameter dan
P = Peluang sukses
n = Banyak percobaan
x = Muncul sukses
n-x = Muncul gagal | | | | | | | | | | | | | |
|
|
makasih info tentang peluangnya ... sangat bermanfaat
BalasHapusSaya ingin menyampaikan kepada seluruh Tki yang bekerja di ***i orang saya ibu SITI seorang TKI DI AUSTRALIA pengen pulang ke indo tapi gak ada ongkos sempat saya putus asah apalagi dengan keadaan hamil gaji suami itupun buat makan sedangkan hutang banyak kebetulan suami saya buka-buka facebook mendapatkan nomor aki katanya bisa bantu orang melunasi hutang melalui jalan TOGEL dengan keadaan susah jadi saya coba hubungi aki dan minta angka bocoran THAILAND angka yang di berikan 4D ternyata betul-betul tembus 1000agi saudarah-saudara di indo mau di luar negri apabila punya masalah hutang sudah lama belum lunas jangan putus asah beliau bisa membantu meringankan masalah anda hubungi aki rusman di nomor + 082 334 222 676 silahkan buktikan sendiri aki tidak melayani SMS demi allah saya sudah membuktikan. untuk info lebih jelas
HapusSaya ingin menyampaikan kepada seluruh Tki yang bekerja di ***i orang saya ibu SITI seorang TKI DI AUSTRALIA pengen pulang ke indo tapi gak ada ongkos sempat saya putus asah apalagi dengan keadaan hamil gaji suami itupun buat makan sedangkan hutang banyak kebetulan suami saya buka-buka facebook mendapatkan nomor aki katanya bisa bantu orang melunasi hutang melalui jalan TOGEL dengan keadaan susah jadi saya coba hubungi aki dan minta angka bocoran THAILAND angka yang di berikan 4D ternyata betul-betul tembus 1000agi saudarah-saudara di indo mau di luar negri apabila punya masalah hutang sudah lama belum lunas jangan putus asah beliau bisa membantu meringankan masalah anda hubungi aki rusman di nomor + 082 334 222 676 silahkan buktikan sendiri aki tidak melayani SMS demi allah saya sudah membuktikan. untuk info lebih jelas
Saya ingin menyampaikan kepada seluruh Tki yang bekerja di ***i orang saya ibu SITI seorang TKI DI AUSTRALIA pengen pulang ke indo tapi gak ada ongkos sempat saya putus asah apalagi dengan keadaan hamil gaji suami itupun buat makan sedangkan hutang banyak kebetulan suami saya buka-buka facebook mendapatkan nomor aki katanya bisa bantu orang melunasi hutang melalui jalan TOGEL dengan keadaan susah jadi saya coba hubungi aki dan minta angka bocoran THAILAND angka yang di berikan 4D ternyata betul-betul tembus 1000agi saudarah-saudara di indo mau di luar negri apabila punya masalah hutang sudah lama belum lunas jangan putus asah beliau bisa membantu meringankan masalah anda hubungi aki rusman di nomor + 082 334 222 676 silahkan buktikan sendiri aki tidak melayani SMS demi allah saya sudah membuktikan. untuk info lebih jelas
KAMI SEKELUARGA TAK LUPA MENGUCAPKAN PUJI SYUKUR KEPADA ALLAH S,W,T
Hapusdan terima kasih banyak kepada AKI atas nomor yang AKI
beri 4 angka [0478] alhamdulillah ternyata itu benar2 tembus .
dan alhamdulillah sekarang saya bisa melunasi semua utan2 saya yang
ada sama tetangga.dan juga BANK BRI dan bukan hanya itu KI. insya
allah saya akan coba untuk membuka usaha sendiri demi mencukupi
kebutuhan keluarga saya sehari-hari itu semua berkat bantuan AKI..
sekali lagi makasih banyak ya AKI… bagi saudara yang suka PASANG NOMOR
yang ingin merubah nasib seperti saya silahkan hubungi KI JAYA,,di no (((085-321-606-847)))
insya allah anda bisa seperti saya…menang NOMOR 850 JUTA , wassalam.
Terima kasih sudah berbagi, banyak sekali manfaat yang saya peroleh dari artikel yang telah Anda share, tetap semangat dalam menulis dan jangan lupa kunjungan baliknya:
BalasHapusBagaimana tips dan trik mengerjakan Soal Psikotes dengan mudah seperti Contoh Soal Psikotes Pauli-Kraepelin-Tes Koran dan Soal Psikotes Gambar. Contoh soal tersebut berdasarkan trend Contoh Soal Psikotes yang beredar di Indonesia.
Sebelum mengikuti psikotes bisa mencoba Tes IQ Online ini utk mengetahui berapa nilai IQ anda. Ada juga trik membuat Contoh CV Yang Baik agar cepat diterima di perusahaan.
Bagi pasangan muda yang ingin cepat memiliki momongan tak ada salahnya mencoba tips Cara Cepat Hamil dari dr. Rosdiana Ramli SpOG yang telah menolong pasangan muda agar segera memperoleh anak.
Harrah's Lake Tahoe Hotel & Casino - Mapyro
BalasHapusFree valet parking, valet parking, 제주도 출장마사지 and 구미 출장안마 a private pool at Harrah's Lake Tahoe 공주 출장샵 Hotel 태백 출장샵 & Casino, 원주 출장마사지 Stateline.